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Abstract—A modulation recognition method based on a con-
volutional neural network (CNN) architecture is assessed through
classification of synthetic baseband signals in the presence of a
second interfering signal source. The complexity and adaptability
of CNNs is leveraged so as to forgo statistical feature extraction
procedures and efficiently classify based on raw signals or their
modified forms. Both scenarios with the interfering signal’s mod-
ulation scheme known and unknown, are considered. Simulation
results show that the CNN architecture achieves considerable
accuracy despite the presence of interference, and the knowledge
of the modulation scheme of the interfering signal significantly
improves the accuracy.

I. INTRODUCTION

In recent years, automatic modulation classification (AMC)
has been experiencing a resurgence in interest, due in part to
the development of the 5th generation of telecommunication
networks (5G), which is expected to result in the proliferation
of end devices in use and an overcrowding of the electromag-
netic spectrum. While military technology has always been a
key driving factor behind the evolution of AMC, commercial
applications are also numerous, and this would include e.g.,
interference identification and spectrum sensing.

AMC is fundamentally a problem of pattern recognition.
AMC methods can be roughly grouped into two categories:
likelihood-based (LB) and feature-based (FB) [1]. The former
is centred around the extraction of likelihood functions and
statistical models from input signals, whereas a classifier’s final
decision is reached through a comparison of values to each
other, or to a specified threshold [2], [3]. Instead, the latter
employs, as a first step, feature selection, which subsequently
informs the classifier’s decision [4], [5]. While LB methods
can be shown to be Bayesian-optimal, their computational
complexity is a significant drawback, as is the degradation
of classification efficiency when disjunctions between system
models and actual systems are present; FB methods, on the
other hand, are often preferred because they can achieve almost
optimal performance if properly constructed, at only a frac-
tion of the computational cost [1]. Commonly, the approach
followed by the latter family involves an explicit a priori
acquisition of predetermined features (these can range from
simple statistical quantities, such as variance or signal power,
to higher-order moments and cumulants), with the selection
often made on a basis of trial-and-error. The classification of
the feature vector is where aspects of machine learning first
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Figure 1: AMC in the presence of interference.

manifest, as the vector is rendered an input to a simpler (e.g.,
a decision tree [6]), or more sophisticated (e.g., an artificial
neural network) classifier. Recent publications further exploit
the capabilities of deep neural networks and feed the sampled
raw time series signals [7], [8], or, alternatively, a transformed
representation (e.g., a periodogram) [9] directly to a neural
network, and the feature extraction process is considered part
of the network’s own function.

In our work, we sought to extend the scope of such
methods to AMC in the presence of interference. Cognitive
communications is becoming particularly important with the
increasing number of wireless devices sharing the same spec-
trum. In addition to spectrum sensing to seek spectrum holes
for interference-free communications [10], more advanced
cognitive techniques would allow interference identification
and cancellation to improve the rate and reliability of commu-
nication [11]. Here, our goal will be to detect the modulation
scheme of an interference signal, a step towards cancelling or
reducing it. This will have to be carried out in the presence
of the desired signal, whose modulation scheme is typically
known; although the case in which neither modulation schemes
are known is also considered. Note that, from the AMC
point of view, this is equivalent to AMC in the presence of
interference, with or without known interference modulation.

Similarly to [7], [8], [9] we will use a deep neural network
for AMC, and evaluate its performance in the presence of
interference. It is observed that, as one would expect, the
detection accuracy depends on the signal-to-interference ratio
as much as the signal-to-noise ratio. AMC is particularly
difficult when the interference and the desired signals have
similar strengths and the modulation scheme of the interference
signal is not known. Knowledge of the modulation scheme



of the interference signal significantly improves the detection
accuracy. Note that, we assume only the knowledge of the
modulation scheme employed by the interferer, but not the
particular transmitted signal.

The rest of the paper is organized as follows. The problem
statement and the dataset used for numerical simulations are
presented in Section II. Section III focuses on the problem
when the modulation scheme of the interfering signal is known.
In Section IV the results of the numerical experiments are
presented. Finally, the paper is concluded in Section V.

II. PROBLEM STATEMENT

Let y[n] be the discrete baseband received signal given by:

y[n] = h1[n]b[n] + h2[n]s[n] + w[n], n = 1, . . . , N, (1)

where b[n] are the samples of the interfering signal whose
modulation scheme we wish to detect, s[n] is the desired sig-
nal, whose modulation is known, h1 and h2 are the correspond-
ing channel gains, and w[n] denotes an additive noise term.
The objective of our experiment is to build and train a deep-
learning-based AMC method which shall successfully identify
the modulation scheme Cb ∈ {1, . . . ,Mint} of signal s[n],
without an explicit procedure of statistical feature extraction.
Furthermore, it is desired to assess whether the knowledge of
the modulation class of the desired signal, Cs ∈ {1, . . . ,Md}
can be incorporated as an input into the classifier and improve
the overall performance. Figure 1 is a visual representation of
the problem as stated above.

A data-driven approach will be followed, and our deep
learning AMC network trained using interference and desired
signals from known modulation constellations. Next, we ex-
plain the dataset used for this purpose.

A. Dataset

A dataset used in recent years in modulation-detection-
related experimentation is RadioML 2016, proposed and de-
scribed by O’Shea et al. in [12]. For our purposes, we have
used an extended version of the RadioML dataset, with the
following features:

• 1.2 million samples (separated into training, valida-
tion, and testing sets),

• 10 different modulation schemes (BPSK, QPSK,
8PSK, 16QAM, 64QAM, GFSK, CPFSK, and PAM4
as digital, and WB-FM and AM-DSB as analog mod-
ulation schemes),

• Sample format: 2× 128 vectors (two channels corre-
sponding to in-phase and quadrature components),

• SNR values ∈ [−20,−18, . . . , 16, 18] dB.

We will consider two settings: an “easy” setting, in which sam-
ples for s[n] and b[n] are selected from a subset of the available
modulation schemes, and a more “difficult” one where all
modulations participate as candidates for both signals. As such,
samples are selected as follows:

• Only data for SNR values > 6 dB retained for b[n]
and > 16 dB for s[n],

• In the easy setting, five classes for the interference
(8PSK, PAM4, QAM64, QPSK, WBFM) are consid-
ered, and another four for the desired signal (AM-
DSB, BPSK, CPFSK, QAM16).

Through repetition and shifting, the selected samples were
combined so as to create 600000-large dataset for training and
100000-large for validation. Subsequently, the final datasets
were created as follows:

Let si be an instance of the final dataset, xi and yi
sample sequences from the earlier primary and secondary (i.e.,
corresponding to interfering and desired signals, respectively)
sets corresponding to the same index i. Each si is created using
the following equation:

si[j] = xi[j]+αiyi[j] , i = 1, . . . ,M , j = 1, . . . , N, (2)

where M is the dataset size (M = 6 × 105 for the training
set, M = 105 for the validation set), N = 128 is the number
of symbols in each sequence as mentioned above, and α is a
factor of attenuation or amplification that adjusts the signal-to-
interference ratio, selected randomly for each instance, taking
one of the following values:

α ∈ [0, 0.1,

√
10

10
, 0.5,

√
2

2
, 1,
√
2, 2,
√
10],

or, equivalently,

α ∈ [−∞,−20,−10,−6,−3, 0, 3, 6, 10] dB.

It is shown in [8] that feeding raw I/Q values to a
CNN architecture provides impressive test accuracy, surpassing
known feature-based techniques that have been developed over
many years. We will explore whether this result extends in
the presence of interference, as well as whether alternative
data representations, instead of raw I/Q symbols as available
in RadioML, may be of any use in improving classification
accuracy. The experiments conducted in [9] include the con-
version of the I/Q format into amplitude and phase values, and
a small improvement in performance is reported.

III. EXPLOITING DESIRED SIGNAL MODULATION
INFORMATION

It is inherent in our system model that the modulation
scheme used for the desired signal is known beforehand; and
thus, we want to investigate whether this additional information
could be exploited in order to improve the overall detection
accuracy, and how significant this improvement would be.

The most straightforward manner to exploit this informa-
tion would be to train a separate classifier for each class of
modulation; i.e., a separate neural network can be trained to
detect the interference modulation for each kind of desired
signal modulation. Although this approach is intuitive and
potentially effective, its complexity and training time grows
significantly in proportion with the number of available classes.

Instead, here the signal class information is incorporated
into the neural network as an additional input. This will be
done in the form of one-hot encoding, as commonly done for
the use of categorical data as feature vectors [13]. In particular,
a vector of length Md is appended, which consists of all zeros,
save for a single 1 at the location corresponding to the index
of the modulation class of the desired signal.
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Figure 2: CNN classifier architecture.
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Figure 3: Desired signal modulation unknown - I/Q input.

IV. EXPERIMENTS AND RESULTS

Unless otherwise stated, all experiments shown henceforth
are conducted upon datasets with 600000 samples in the
training set and 100000 in the validation and testing set. Each
datapoint consists of 128 I/Q pairs sampled at the receiver.
The distribution of modulation schemes is as described in
Subsection II-A, and we shall consider both the setting in
which all 10 modulation classes are present, and the restricted
easy setting in order to assess the impact of the number of
classes on accuracy.

The CNN architecture used for classification is presented
in Figure 2, and it consists of two pairs of convolutional
and max-pooling layers followed by three fully-connected
layers, terminating in a softmax layer with either 10 or 5
outputs, depending on the setting. The fully-connected layers
are initialised with the Xavier function, and the first two
are also fitted with dropout mechanisms. The Leaky ReLU
activation function is used throughout, with the exception of
the final (softmax) layer.

Each figure represents the best results available for every
separate sub-experiment after several runs with varied hyperpa-
rameter values. It is noted that only one CNN was trained per
experiment, i.e. each training phase included all datapoints,
without regard to SNR or SIR. Simulation results for the
simpler (5 classes) and difficult settings (10 classes) will be
presented next to each other for ease of comparison.

In Figures 3 and 4, we first test the performance when the
desired signal is unknown. Note that α = −30 dB corresponds

to the case in which there is no desired signal, which is
equivalent to the scenario in [8]. As the signal-to-interference
ratio, α, increases, the desired signal becomes gradually more
dominant and the expected deterioration of performance is
noticed. Worth noting is that the higher SNR values for the
interference signal only provide better results when the desired
signal is weak, whereas the high-SNR curves are outperformed
by those derived by noisier inputs for higher α, sometimes
even by 10%. Also notable is a steep decline of most curves
when the α factor is equal to 0 dB, which is accompanied
by a stronger rise afterwards in the 10-class scenario. The
most likely explanation for this behaviour is the confusion
of the classifier over two independent components superposed
at equal power, whereas in other areas it might be receiving
training to locate the stronger signal, and somehow remove its
impact.

In Fig. 5 and 6 it is assumed that the desired signal’s
modulation class is known. In general, the one-hot encoding
method, despite its simple nature, has proven effective. We
observe that the detection accuracy has improved significantly
compared to Fig. 3 and 4, with a slightly higher variance
between the accuracy of different curves (corresponding to
different SNR values). It is obvious that the performance
degrades with the increase in α; this is because, although the
desired signal modulation class is unknown, we are unable
to completely remove it. In the 10-class case, the application
of one-hot encoding is especially noteworthy for its effect
upon the 0dB “canyon”; notice how it has disappeared almost
entirely. It is noted that in the easy setting all modulation
schemes exhibit performance above 50%.
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(a) Simple A/φ - 5 classes
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Figure 4: Effects of amplitude-phase transform.
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(a) One-hot method - 5 classes
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Figure 5: Desired signal modulation known - I/Q input with one-hot encoding.
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(a) One-hot plus A/φ - 5 classes
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Figure 6: Effects of combined A/φ and one-hot techniques
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Figure 7: Confusion matrices for experiments with normalised signals

Although the amplitude/phase transformation was reason-
ably effective in its original context, in this superposition
problem it does not seem to solve many of our problems; on
the contrary, it seems to introduce extra confusion, which is
more apparent for high values of α.

Singling out the cases described in Figure 5 as the best
possible achieved through our experiments (peaking at 78.2%
accuracy for 5 classes, 55.7% for 10, over all sub-categories of
SIR and SNR), we plot confusion matrices for the classification
results on the validation set after the end of training so as to
better understand the effectiveness of the algorithm in cases of
different signals; the results are shown in Figure 7.

In the easy setting, it is reasonable to expect that WBFM
shall be the most effective to recognize, as it is the only
analog modulation present in the reduced dataset, while the
two different PSK modulations are easier to confuse with
each other. In the difficult setting, the most telling feature are
the low performance rates for QAM16, which is most easily
misclassified as the only other available QAM modulation
scheme (QAM64), and a similar tendency observed with 8PSK
and QPSK. Likewise, WBFM loses its formerly observed edge,
as many of its instances are, instead, classified as AM-DSB
signals (which, again, can be explained by the fact that those
are the two available analog modulations). The two frequency-
shifting modulations (CPFSK, GFSK) are proven the most
robust, and do not mutually deteriorate their performance as it
happens, e.g., with PSK or analog modulations.

V. CONCLUSIONS

This paper presents a study on the efficiency of deep CNNs
with regard to AMC under the effect of interference. An
architecture consisting of two convolutional and three fully-
connected layers is trained to classify 5 or 10 modulation
formats transmitted over imperfect channels in the presence
of interference, bypassing the traditional process of a priori
feature extraction. The incorporation of the knowledge of the

interfering signal’s modulation scheme is assessed, and is
shown to significantly improve classification accuracy.
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